Observation-Driven Research to Inform Better Groundwater Management Policies
Sep 13, 2019
Groundwater maintains vital ecosystems and strongly influences water and energy budgets. Although at least 400 million people in sub-Saharan Africa depend on this valuable resource for their domestic water needs, the processes that sustain it and their sensitivity to climatic variability, are poorly understood. IIASA contributed to a study that looked into climate impacts on groundwater in light of changing climatic patterns in Africa.
Groundwater is a hidden resource that collects and flows beneath the Earth's surface, filling the porous spaces in soil, sediment, and rocks. It is an important part of the water cycle and a source for aquifers, springs, and wells. It mostly originates from, and is also replenished by, rain, melting snow, and other forms of precipitation that soak into the ground.
It plays a central role in sustaining water supplies and livelihoods in sub-Saharan Africa due to its widespread availability, generally high quality, and ability to buffer the impacts of drought and climate variability that characterize this region. Groundwater levels are governed by a complex interplay between replenishment from rain and other sources; and outflows to streams, lakes, oceans or the atmosphere, which are all in turn influenced by a variety of factors from the climate, geology, land cover, and of course, human abstraction.
Demand for groundwater is growing rapidly across the continent, which makes it crucial for policymakers to put mechanisms in place for the sustainable management of this valuable resource into the future.
According to the authors of the study published in the journal Nature, a robust, data-driven, understanding of groundwater recharge – and critically its dependence on climate – is fundamentally required to inform water resource decision-making. In addition, the authors emphasize that an improved understanding of groundwater-climate sensitivity is integral to understanding not only today’s water-climate-ecological-human interactions across the region, but also those of the past.
Observation data of groundwater resources for Africa is however sorely lacking, which has caused regional governments to rely heavily on large-scale hydrological models to obtain estimates of potential groundwater resources for their water security assessments. Unfortunately, these models remain unvalidated by groundwater observations, which means that the estimates derived from them contain a high degree of uncertainty.
To address these issues, the researchers set out to collect available groundwater data from nine countries across sub-Saharan Africa, after which they looked into the climate impacts on groundwater, taking into account the changing climatic patterns in recent years.
The 14 resulting multi-decadal hydrographs and accompanying precipitation records cover a wide range of climate zones from hyper-arid to humid, as well as a diverse range of geological and landscape settings.
Most of the hydrographs indicate that higher rainfall does not necessarily equate to higher recharge values for groundwater and that aridity and episodicity play an important role in determining the amount of groundwater replenishment. In this regard, the authors highlight seasonal groundwater-level rises of varying magnitude, showing more gains than losses of groundwater during most years on record.
The exceptions to this phenomenon are, however, Tanzania, Namibia, and South Africa where multi-year continuous groundwater-level declines marked by episodic replenishment events, were observed.
In addition, long term rising trends observed in the hydrographs for Niger reflect increases in recharge rates after the clearance of large patches of native vegetation in the 1960s that have not yet caught up with rates of net groundwater drainage due to long groundwater response times in the area. The absence of long-term trends in other areas indicates a relatively stable balance between long-term rates of groundwater replenishment and outflow.
“Groundwater recharge mechanisms are very complex in Africa. In some sub-Saharan African countries, drying climate trends will lead to challenges for meeting increasing demands for water. Management of groundwater resources in Africa is urgently needed to utilize changing rainfall patterns and the increasing demand for groundwater. This will require observation data and good governance frameworks, which unfortunately are currently often lacking,” explains study coauthor and IIASA Acting Water Program Director, Yoshihide Wada.
The researchers say that their data-driven results generally implies a greater resilience to climate change than previously supposed in many locations from a groundwater perspective. They however point out that much more observation-driven research is needed to clarify issues around the management of groundwater and to address the balance of change between groundwater and surface water resources.
About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the 21st century. Our findings provide valuable options to policymakers to shape the future of our changing world.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
IIASA
Yoshihide Wada
Acting Program Director
Schlossplatz 1
2361 Laxenburg
Austria
Phone:
+43 2236 807 241