Innovative water solutions for sustainable cities
Aug 09, 2024
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University of California, Berkeley, and BlueTech Research shows how this can be achieved with innovative approaches. Three roadmaps describe solutions that work at the level of single buildings, urban neighbourhoods as well as cities combined with local agriculture. Six global cities are already implementing these approaches and can serve as lighthouse models for other cities interested in integrating innovative water solutions.
Climate change, diminishing water resources and a rapidly growing urban population are forcing us to rethink water management. Major cities around the world such as San Francisco, Cape Town, Bengaluru or Barcelona are struggling with recurring water crises. “We need new approaches to increase the resilience of cities against increasing drought problems,” says Christian Binz, Group Leader in the Department of Environmental Social Sciences at the aquatic research institute Eawag. “One solution is to recycle the water locally. This creates a reliable source of water during drought periods, for example in major cities in India, Africa and increasingly also North America. But recycling the resources contained in wastewater, such as energy and nutrients, is also becoming increasingly important.”
For more than 20 years, Eawag has been developing innovative urban water management solutions that manage water and the resources contained in it in small-scale cycles. In interdisciplinary teams, the aquatic research institute also investigates how the new technologies can be put into practice. To this end, researchers have analysed major cities around the world that have successfully adopted circular approaches to water management in recent years, including San Francisco, Bengaluru, Hamburg, Paris, Geneva and Helsingborg.
“We have realised that many exciting solutions for circular water and wastewater management are already in operation around the world,” says Christian Binz. “However, many of the key players still hardly know of each other.” In summer 2023, Eawag together with the University of California, Berkeley, and the consulting company BlueTech Research therefore invited leading experts from cities, companies, international water organisations and investors like the World Bank to a workshop in Dübendorf. Eawag has summarised the results in a white paper entitled “Mainstreaming Decentralised Urban Water Management Solutions for Sustainable Cities”.
In addition to the description of the lighthouse cities, the centrepiece is three roadmaps. They show three different paths of implementing circular water solutions on a broad scale: (1) reuse of non-potable water at building level, (2) district-scale resource recovery and (3) decentralised nutrient management. “With the workshop and the white paper, we want to build an international network through which ideas and knowledge on circular water solutions can spread worldwide,” says Christian Binz, the workshop’s main organiser. “The description of the lighthouse cities should also inspire urban planners in pursuing more sustainable water solutions in their cities. The aim is that not every city has to start from scratch if it wants to plan, build and operate innovative water systems.”
Roadmap 1: Reuse of non-potable water at building level
One way to close the loop on water use and reduce waste is to equip individual buildings with their own wastewater or greywater treatment plants, treat the water directly on site and reuse it locally. Important steps on this roadmap are to standardise existing technologies, reduce their costs in manufacturing, operation and maintenance, bring them to market on a large scale and convince building owners of their usefulness. Two major cities following this path are San Francisco and Bengaluru.
San Francisco’s Onsite Water Reuse System Program was established in 2012 to make the city more resilient to recurring droughts. A city ordinance mandates the installation of on-site non-potable water reuse systems in commercial, multi-family and mixed-use developments of 9,200 m2 or more. In order to build confidence in on-site recycling systems, the city provides technical assistance to stakeholders both locally and through a National Blue Ribbon Commission in partnership with 15 other states.
Treated water is reused for non-potbale uses such as flushing toilets, washing laundry or irrigation. There are currently 43 plants in operation and another 66 plants in the approval process. The city has proven that decentralised water recycling systems can be professionally managed, well-regulated and safely operated. “In 2023 alone, San Francisco’s estimated potable water savings amounted to approximately 46.7 million gallons, equivalent to the yearly water usage of approximately 3,000 residents, and in 2040 the yearly water savings will be the equivalent to the usage of approximately 30,000 residents,” says Paula Kehoe, San Francisco’s Director of Water Resources. Kehoe adds: “Well-run decentralised water reuse programmes help us sustainably manage our scarce water resources, especially during drought years.”
The water situation in Bengaluru is even more dramatic. In the dry season, water becomes extremely scarce and recurring droughts further worsen the situation. At the same time, about 500,000 additional people move to the city every year. Entire building complexes are currently running out of water. Yet, it is impossible to plan, let alone build, expansive pipe and sewer systems for drinking water supply or wastewater disposal in a reasonable amount of time. “We have to treat the wastewater directly on site and reuse it in small circuits. And not just for gardening and toilet flushing, but possibly also for showering, washing machines or swimming pools,” says Shreya Nath, project manager at the NGO WELL Labs in Bengaluru. “During droughts, this is increasingly the only way to reliably supply the population with sufficient water.”
In Bengaluru, all new residential buildings above a certain size must therefore install local wastewater treatment and reuse systems. Over 3,000 systems are currently in operation and recycle around 20 per cent of the city’s wastewater. A market for decentralised wastewater treatment has also emerged in the city. Innovative companies offer solutions that allow apartment blocks to sell their treated wastewater to customers in the neighbourhood, such as laundries, construction sites or industrial companies.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Aug 02, 2024
Article
City of South Bend
Utility Reduces CSO Volume by 80% and Saves $400 Million in Capex Spending Using “Smart Sewer” Technology
The St. Joseph River has long shaped South Bend’s economy, especially during the mid-20th century, when the river was …
Contact
Eawag
Bärbel Zierl
Author
Überlandstrasse 133
8600 Dübendorf
Switzerland
Phone:
+41 58 765 55 11
Fax:
+41 58 765 50 28